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Scheme 1. Examples of aminomethylene bisphosphonates used in pharmacy and
metal separation.
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Scheme 2. Reaction of diethyl phosphite with triethyl orthoformate.
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Phosphonic acids are of growing importance in understanding
and modulating biological processes.1 The synthesis of a-substi-
tuted phosphoryl derivatives (phosphonic and phosphinic acids)
has attracted significant attention due to their biological activities
with broad applications as enzyme inhibitors, antimetabolites, and
antibiotics.2 Among a-functionalized phosphonic acids, a-amin-
oalkylphosphonic derivatives have biological activities such as
anti-bacterial,2 herbicidal,3 and fungicidal.4 Aminoalkylphosphonic
acids, the phosphonic acid analogues of 2- or a-amino carboxylic
acids, are an important class of compounds that exhibit a variety
of interesting and useful properties.

In contrast to the widely studied aminophosphonic acid deriva-
tives,5–8 relatively few papers describe the chemistry of aminom-
ethylene bisphosphonates. Aminomethylene bisphosphonates
have been used as powerful inhibitors of the enzyme farnesyl pyro-
phosphate synthase (FPPS).9 They display therapeutic properties
for conditions such as osteoporosis, rheumatoid arthritis, and can-
cer (Scheme 1).10 In addition to these, these compounds possess
interesting activities against many parasites including trypano-
soma.11 Besides their biological importance, aminomethylene bis-
phosphonates are also known for their metal-chelating ability.
Recently, the uranyl (UO2

2þ)-binding properties of these com-
pounds, showing excellent association constants, were reported.12

Synthetic routes to aminomethylene bisphosphonates involve
prolonged heating in acid-catalyzed reactions of nitriles with phos-
phites,13 Mannich-type reaction of amines with triethyl orthofor-
mate and phosphites under nitrogen,14 phosphorylation of
formamides,15 and Beckmann rearrangement of oximes in the
presence of POCl3 followed by treatment with trialkyl phos-
phites.16 Recently, a new preparation of aminomethylene bisphos-
phonates was reported involving the N–H insertion reaction of
amines with diphosphonodiazomethane carbene in the presence
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Scheme 3. Reaction of amines with triethyl orthoformate and diethyl phosphite.



Table 1
One-pot reaction of aniline with triethyl orthoformate and diethyl phosphite under various reaction conditions

1a 2a

Ph NH2 + HC(OEt)3 + H P(OEt)2
O

2 P(OEt)2
O

NH

(EtO)2P
O

Ph

Entry Reaction conditionsa Reaction temperature (�C) Reaction time (min) Yieldb (%) 2a

1 A 70 48 (h) 11
2 A 120 48 (h) 15
3 B 80 30 25
4 B 100 30 45
5 B 120 30 75
6 B 140 30 75
7 B 120 40 75

a A = thermal heating, B = microwave assisted.
b Isolated yield.
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of rhodium complexes.12 However, these methods have associated
problems, including harsh reaction conditions, long-reaction times
and side reactions. On the other hand, the key step in the one-pot
synthesis of aminomethylene bisphosphonates is nucleophilic
addition of an amine to triethyl orthoformate followed by addition
of a phosphite to the resulting imine. Therefore, the formation of
diethoxymethyl phosphonates frequently accompanies the forma-
tion of aminomethylene bisphosphonates (Scheme 2).17

The application of microwave energy to accelerate organic reac-
tions is of increasing interest and offers several advantages over
conventional techniques.18 Syntheses which normally require long
periods can be achieved conveniently and very rapidly in a micro-
wave reactor. As part of our efforts to introduce novel methods for
the synthesis of organophosphorus compounds,19 herein we report
a new method for the synthesis of aminomethylene bisphospho-
nates. We have found that microwave-assisted one-pot reactions
of amines with triethyl orthoformate and diethyl phosphite give
aminomethylene bisphosphonates in good yields (Scheme 3).

Thus, the one-pot reaction of aniline, chosen as a model amine,
with triethyl orthoformate and diethyl phosphite was studied un-
der various reaction conditions and the progress of the reaction
was monitored by TLC (Table 1). Treatment of 1a with a mixture
of triethyl orthoformate and diethyl phosphite gave the corre-
sponding aminomethylene bisphosphonate 2a in 11% yield after
48 h at 70 �C (entry 1). When the reaction temperature was raised
from 70 �C to 120 �C, the yield of 2a increased to 15% (entry 2). We
found that using a microwave reactor led to acceleration of the
Table 2
Synthesis of various aminomethylene bisphosphonates under microwave irradiation

Amine 1 R Product Reaction time (min) Yielda (%) 2

C6H5– 2a 30 75
p-ClC6H4– 2b 30 70
p-MeC6H4– 2c 30 80
p-BrC6H4– 2d 30 70
p-MeOC6H4– 2e 30 82
m-O2NC6H4– 2f 50 56
m-EtC6H4– 2g 30 81
o-EtC6H4– 2h 30 76
4-Cl,2-O2NC6H3– 2i 80 75
1-Naphthyl 2j 60 55
PhCH2– 2k 60 —b

3-Pyridyl 2l 60 —b

4-PhNHC6H4– 2m 60 85

a Isolated yield.
b Unidentified mixture of products.
reaction rate and an increase in the yield of 2a (entries 3–7). We
obtained the best results on heating at 120 �C for 30 min (entry
5). The yield of the reaction did not change on further increasing
the microwave reactor temperature and reaction time (entries 6
and 7).

This process was applied successfully to other amines as sum-
marized in Table 2. Substituted anilines reacted with triethyl
orthoformate and diethyl phosphite under microwave irradiation
to afford the desired products 2b–i in moderate to good yields.
1-Naphthylamine also reacted with triethyl orthoformate and
diethyl phosphite to give compound 2j in 55% yield. Reaction of
aliphatic amine 1k and 3-aminopyridine 1l with triethyl orthofor-
mate and diethyl phosphite gave unidentified mixed products.
Reaction of 4-aminodiphenylamine 1m (with two different amine
groups) gave compound 2m in 85% yield as the only product.

In summary, a series of aminomethylene bisphosphonates have
been synthesized via reactions of amines with diethyl phosphite
and triethyl orthoformate. The simple work-up, mild reaction con-
ditions, good yields, and clean reactions with no tar formation
make this method an attractive and novel contribution to present
methodologies.20
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3.90–4.18 (m, 8H), 4.71 (dt, 1H, JHP = 22 Hz, J = 10.25 Hz), 6.64 (t, 1H, J = 7.5 Hz),
7.85–7.08 (m, 3H). 31P NMR (CD3SOCD3–TMS, 101.25 MHz), d: 18.70. 13C NMR
(CD3SOCD3–TMS, 62.9 MHz), d: 13.5, 16.4–16.6 (m), 23.8, 49.1 (t,
JPC = 144.6 Hz), 62.6–63.2 (m), 112.0, 118.3, 127.1, 128.0, 128.5, 143.8 (t,
JPC = 4.4 Hz). Anal. Calcd for C17H31NO6P2: C, 50.10; H, 7.67; N, 3.44. Found: C,
49.95; H, 7.55; N, 3.52. Compound 2i: colorless oil; 1H NMR (CD3SOCD3—
250 MHz), d: 1.03–1.24 (m, 12H), 3.98–4.17 (m, 8H), 5.36 (dt, 1H,
JHP = 21.75 Hz, J = 10.5 Hz), 7.53 (d, 1H, J = 9.25 Hz), 7.56 (dd, 1H, J = 9.25 Hz,
J = 2.5 Hz), 8.08 (d, 1H, J = 2.5 Hz), 8.27 (d, 1H, NH, J = 7.5 Hz). 31P NMR
(CD3SOCD3—101.25 MHz), d: 16.75. 13C NMR (CD3SOCD3—62.9 MHz), d: 16.3–
16.7 (m), 48.1 (t, JPC = 143.4 Hz), 62.5, 118.5, 120.8, 125.3, 132.6, 136.6, 143.0 (t,
J = 5.03 Hz). Anal. Calcd for C15H25N2O8P2Cl: C, 39.29; H, 5.50; N, 6.11. Found:
C, 39.11; H, 5.67; N, 6.05. Compound 2j: white solid, mp: 63–64 �C; 1H NMR
(CD3SOCD3–TMS, 250 MHz), d: 1.01–1.28 (m, 12H), 3.90–4.21 (m, 8H), 4.83 (dt,
1H, JHP = 22.5 Hz, J = 10 Hz), 5.34 (d, 1H, NH, J = 9.5 Hz), 6.98 (d, 1H, J = 7 Hz),
7.17–7.60 (m, 4H), 7.72–7.85 (m, 1H), 7.95–8.09 (m, 1H). 31P NMR (CD3SOCD3–
TMS, 101.25 MHz), d: 18.55. 13C NMR (CD3SOCD3–TMS, 62.9 MHz), d: 16.3, 49.1
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128.7, 134.2, 141.5. Anal. Calcd for C19H29NO6P2: C, 53.13; H, 6.81; N, 3.26.
Found: C, 52.95; H, 6.63; N, 3.10. Compound 2m: white solid, mp: 81–82 �C; 1H
NMR (CD3SOCD3—250 MHz), d: 1.03–1.25 (m, 12H), 3.92–4.24 (m, 8H), 4.44
(dt, 1H, JHP = 22.5 Hz, J = 10.5 Hz), 5.37 (d, 1H, NH, J = 10.5 Hz), 6.62 (t, 1H,
J = 7.5 Hz), 6.77–6.95 (m, 6H,), 7.09 (t, 2H, J = 8.25 Hz), 7.57 (s, NH, 1H). 31P
NMR (CD3SOCD3—101.25 MHz), d: 18.77. 13C NMR (CD3SOCD3—62.9 MHz), d:
16.4, 49.6 (t, JPC = 145.9 Hz), 63.3–63.7 (m), 114.5, 114.6, 118.2, 121.5, 129.4,
133.9, 141.9 (t, JPC = 4.3 Hz), 146.0. Anal. Calcd for C21H32N2O6P2: C, 53.60; H,
6.86; N, 5.96. Found: C, 53.51; H, 6.74; N, 5.86.


